Multivariate Statistical Analysis of Bakken Completions: Aiming for Optimal Design

2016 Williston Basin Petroleum Conference
May 24-26, 2016

Mark Lenko,
Managing Director (interim) - Intelligence and Engineering Director
B.Sc., B.A., M.Ec., P.Eng.

Samantha Foster,
Intermediate Engineer
B.Sc., M.Sc., P.Eng.
Disclaimers
The information contained herein has been prepared solely for information purposes and is not intended to be used for trading or investment purposes or as an offer to sell or the solicitation of an offer to buy any security or financial product. The information has been compiled by Canadian Discovery from internal sources as well as prepared from various public and industry sources that we believe are reliable, but no representation or warranty, expressed or implied is made by Canadian Discovery, its affiliates or any other person as to the accuracy or completeness of the information. Such information is provided with the expectation that it will be read as part of a mosaic of analyses and should not be relied upon on a stand-alone basis. Past performance should not be taken as an indication or guarantee of future performance, and Canadian Discovery makes no representation of warranty regarding future performance. The opinions expressed in this report (presentation) reflect the judgment of Canadian Discovery as of the date of this report and are subject to change without notice. This report (presentation) is not an offer to sell or a solicitation of an offer to buy any securities. To the full extent provided by law, neither Canadian Discovery nor any of its affiliates, nor any other person accepts any liability whatsoever for a direct or consequential loss arising from any use of this report (presentation) or the information contained herein. As in all aspects of oil and gas evaluation, there are uncertainties in the interpretation of engineering, reservoir and geological data: therefore, the recipient should rely solely on its own independent investigation, evaluation, and judgment with respect to the information contained herein and any additional information provided by Canadian Discovery or its representatives. All trademarks, service marks, and trade names not owned by Canadian Discovery are the property of their respective owners.

Forward-Looking Statements
This presentation may contain certain forward-looking information as defined in applicable securities laws (referred to herein as “forward-looking statements”). Forward-looking statements involve known and unknown risks, uncertainties and other factors which are beyond Canadian Discovery’s ability to predict or control and may cause Canadian Discovery’s actual results, performance or achievements to be materially different from any of its future results, performance or achievements expressed or implied by forward-looking statements.

Accordingly, readers should not place undue reliance on forward-looking statements. The forward-looking statements contained herein are made as of the date hereof, or such other date or dates specified in such statements. Canadian Discovery undertakes no obligation to update publicly or otherwise revise any forward-looking statements contained herein whether as a result of new information or future events or otherwise, except as may be required by law. If the Company does update one or more forward-looking statements, no inference should be drawn that it will make additional updates with respect to those or other forward-looking statements.
Background
CAPABLE OPERATORS WITH VARYING RESULTS

- Within Viewfield, the Estimated Ultimate Recovery (EUR) varies widely
 - 81 mboe is the median EUR
 - 20 active operators, 2,529 total wells

- Operators also see a range of recoveries.
 - Median EUR, mboe
 - CPG 100
 - PBN 74
 - TOG 62
 - MSO 111
THE BAKKEN IS MASSIVE
Considerable Variability

- The entire Bakken covers 200,000 mi² or 520,000 km²
 - Reservoir thickness at Viewfield ranges up to 65 ft or 20m

- Produces primarily light oil:
 - Significant solution gas
 - Waterfloods in place

- Over 3,500 wells drilled
 - TVD 2,400 ft to 10,500 ft
 - TVD 725m to 3,200m
 - Lateral lengths up to 8,600 ft or 2,630m
NOT ALL BAKKEN IS CREATED EQUALLY

Five Distinct Play Areas

- Facies
 - 4 stacked reservoir facies

- Temperature
 - Determines maturity of hydrocarbons
 - Oil window – migrated from ND – Thanks!

- Pressure > Hydrogeological Regimes
 - High Oil Saturation at Viewfield
 - Surrounded by Aquifers

Canadian Discovery Ltd.
VARIABLE OUTCOMES
Uncontrollable vs. Controllable Factors

• Uncontrollable variables are beyond what operators can influence:
 ○ Reservoir characteristics: pressure, temperature, porosity, permeability
 ○ Rock properties: ductility, geochemistry, rock stress

• Controllable variables are design and operational decisions that influence outcomes
 ○ Drilling: fluid systems, well spacing, lateral length, casing system
 ○ Completions: technology, fluid (type, volume), proppant (type, blend, tonnage), stages (number, spacing)

Factors in All Completions Designs
Multivariate Analysis
Influential controllable factors
• Relationship between well performance and geologic/engineering variables is:
 - Non-linear
 - Dominated by complex interactions between variables

• Multivariate statistics aims to:
 - Identify variables that have the largest effect on outcome
 - Group wells according to similar inputs and outputs
 - Discover complex relationships in your data
AN OLD FASHIONED OPTIMIZATION PROBLEM

- Which completion variable(s) and in what amounts will most beneficially influence ultimate recovery
- Select a play area with a consistent subset of uncontrollable variables
- The analysis focuses on the impact of controllable completion variables
- Wells impacted by the waterflood have been excluded from the analysis
Step 1:
Is there dependence between EUR and any of the variables?
Yes: Go to Step 2
No: Stop growing the tree
Building a Decision Tree

Strongest Associations

Step 1:
Is there dependence between EUR and any of the variables?
- Yes: Go to Step 2
- No: Stop growing the tree

Step 2:
Find the variable that has the strongest association to EUR
BUILDING A DECISION TREE
Identifying The Impact

Step 1:
Is there dependence between EUR and any of the variables?
Yes: Go to Step 2
No: Stop growing the tree

Step 2:
Find the variable that has the strongest association to EUR (using a Chi squared test)

Step 3:
Find the split point of the variable that results in the largest difference between the mean of two groups
BUILDING A DECISION TREE
Finding the Next Factor

Step 1:
Is there dependence between EUR and any of the variables?
Yes: Go to Step 2
No: Stop growing the tree

Step 2:
Find the variable that has the strongest association to EUR (using a Chi squared test)

Step 3:
Find the split point of the variable that results in the largest difference between the mean of two groups

Step 4:
Repeat steps 1-3 on each of the sub groups
RECURSIVE PARTITIONING
Resulting Decision Tree
Outcomes
Path to Optimal Design
OPTIMAL PATH
Toward Maximum EUR

- The path to the group with the highest median EUR
- Three key factors to maximize EUR
 - Completions Technology – Coiled Tubing (packer)
 - Proppant Tonnage – > 4 tonnes/stage
 - Number of Stages - > 24 stages
The Viewfield Area has 2,052 wells

- EURs
 - P10: 201 Mbbl
 - P50: 63 Mbbl
 - P90: 11 Mbbl
Focus on the top 5 original operators out of 20 active in the area.
HIGH EUR EVOLUTION
1: Wells Using CT Cut/Port

- Wells completed with CT Cut/Port system, 701 wells
- EURs
 - P10: 231 Mbbl
 - P50: 92 Mbbl
 - P90: 17 Mbbl
Over time operators have gravitated to using CT completion systems.

EURs have increased.
2: Proppant – more than 4 tonnes per stage

- Wells completed using a CT completion systems and and more than 4 tonnes of proppant per stage, 408 wells
- EURs
 - P10: 251 Mbbl
 - P50: 103 Mbbl
 - P90: 21 Mbbl
As operators continue operations, higher tonnages have become the norm.

Median EURs are consistently higher than the lower tonnage pumped.
HIGH EUR EVOLUTION

3: Completed Stages – more than 24 stages

- Wells using CT completion system, pumping more than 4 tonnes per stage and more than 24 stages, 222 wells
- EURs
 - P10: 276 Mbbl
 - P50: 138 Mbbl
 - P90: 30 Mbbl
• One operators, Crescent Point, entirely dominates this group.

• The optimal completion has a P50 EUR significantly above the overall P50 and is approaching the P10 for the entire Viewfield area.
<table>
<thead>
<tr>
<th>Operator</th>
<th>CGP (optimal)</th>
<th>CPG</th>
<th>PBN</th>
<th>LEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Count</td>
<td>222</td>
<td>867</td>
<td>597</td>
<td>126</td>
</tr>
<tr>
<td>Tech</td>
<td>222</td>
<td>429</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>CT Cut/Port (Packer)</td>
<td>222</td>
<td>429</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Ball & Seat</td>
<td>326</td>
<td>534</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>CT (Straddle)</td>
<td>59</td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>Fluid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>220</td>
<td>663</td>
<td>519</td>
<td>75</td>
</tr>
<tr>
<td>Surfactant</td>
<td>155</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stages</td>
<td>25</td>
<td>16</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Proppant per stage</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Fluid per stage</td>
<td>19</td>
<td>29</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Hztl Length</td>
<td>1,280</td>
<td>1,312</td>
<td>1,383</td>
<td>1,316</td>
</tr>
<tr>
<td>Frac Spacing</td>
<td>51</td>
<td>156</td>
<td>97</td>
<td>48</td>
</tr>
<tr>
<td>EUR</td>
<td>150</td>
<td>88</td>
<td>75</td>
<td>55</td>
</tr>
<tr>
<td>Operator</td>
<td>CPG (optimal)</td>
<td>CPG</td>
<td>PBN</td>
<td>LEG</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Well Count</td>
<td>222</td>
<td>867</td>
<td>597</td>
<td>126</td>
</tr>
<tr>
<td>Median Cost, $000’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion</td>
<td>560</td>
<td>530</td>
<td>499</td>
<td>587</td>
</tr>
<tr>
<td>Drilling</td>
<td>1,017</td>
<td>992</td>
<td>1,148</td>
<td>1,137</td>
</tr>
<tr>
<td>Half Cycle</td>
<td>1,576</td>
<td>1,522</td>
<td>1,647</td>
<td>1,724</td>
</tr>
<tr>
<td>Efficiency, $ per boe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion</td>
<td>3.74</td>
<td>5.79</td>
<td>7.35</td>
<td>11.16</td>
</tr>
<tr>
<td>Drilling</td>
<td>6.78</td>
<td>11.08</td>
<td>15.21</td>
<td>22.22</td>
</tr>
<tr>
<td>Half Cycle</td>
<td>10.52</td>
<td>16.87</td>
<td>22.56</td>
<td>33.38</td>
</tr>
<tr>
<td>Efficiency, $000’s per 100m hztl section</td>
<td>42</td>
<td>39</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Completion</td>
<td>78</td>
<td>75</td>
<td>87</td>
<td>86</td>
</tr>
<tr>
<td>Drilling</td>
<td>120</td>
<td>114</td>
<td>127</td>
<td>126</td>
</tr>
<tr>
<td>Efficiency, mboe per 100m hztl section</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion</td>
<td>11.3</td>
<td>6.6</td>
<td>6.0</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Recent Activity

What have you done lately? (Since January 2014)

<table>
<thead>
<tr>
<th>Operator</th>
<th>CPG (optimal)</th>
<th>CPG</th>
<th>LEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Count</td>
<td>31</td>
<td>149</td>
<td>7</td>
</tr>
<tr>
<td>Tech</td>
<td>31</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>CT Cut/Port (Packer)</td>
<td>31</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>CT (Straddle)</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Fluid</td>
<td>30</td>
<td>148</td>
<td>7</td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfactant</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stages</td>
<td>25</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>Prop per stage</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Fluid per stage</td>
<td>20</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>Hztl Length</td>
<td>1303</td>
<td>1314</td>
<td>1223</td>
</tr>
<tr>
<td>Frac Spacing</td>
<td>52</td>
<td>53</td>
<td>43</td>
</tr>
<tr>
<td>EUR, recent (187)</td>
<td>138</td>
<td>80</td>
<td>38</td>
</tr>
<tr>
<td>EUR, overall (2,052)</td>
<td>150</td>
<td>88</td>
<td>55</td>
</tr>
</tbody>
</table>
Recent Activity

How’s it working? (Since January 2014)

<table>
<thead>
<tr>
<th>Operator</th>
<th>CPG (Optimal)</th>
<th>CPG</th>
<th>LEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Count</td>
<td>31</td>
<td>149</td>
<td>7</td>
</tr>
<tr>
<td>Median Cost, $000’s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion</td>
<td>556</td>
<td>531</td>
<td>623</td>
</tr>
<tr>
<td>Drilling</td>
<td>1,020</td>
<td>1,027</td>
<td>1,209</td>
</tr>
<tr>
<td>Half Cycle</td>
<td>1,579</td>
<td>1,558</td>
<td>1,832</td>
</tr>
<tr>
<td>Efficiency, $/boe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion</td>
<td>4.03</td>
<td>6.96</td>
<td>20.84</td>
</tr>
<tr>
<td>Drilling</td>
<td>7.63</td>
<td>13.05</td>
<td>31.56</td>
</tr>
<tr>
<td>Half Cycle</td>
<td>11.66</td>
<td>20.01</td>
<td>52.39</td>
</tr>
<tr>
<td>Efficiency, $000’s /100m hztl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion</td>
<td>43</td>
<td>41</td>
<td>51</td>
</tr>
<tr>
<td>Drilling</td>
<td>78</td>
<td>80</td>
<td>127</td>
</tr>
<tr>
<td>Half Cycle</td>
<td>120</td>
<td>122</td>
<td>179</td>
</tr>
<tr>
<td>Efficiency, mboe / 100m hztl</td>
<td>10.6</td>
<td>6.2</td>
<td>4.2</td>
</tr>
</tbody>
</table>
LOW COST EVOLUTION
Designing For Low Cost

1. Technology
 p < 0.001

2. Prop per Stage (t)
 p < 0.001
 ≤ 4
 > 4

3. Stages
 p = 0.006
 ≤ 15
 > 15

4. Prop per Stage (t)
 p = 0.034
 ≤ 7
 > 7

5. Stages
 p < 0.001
 ≤ 24
 > 24

6. Ball & Seat, CT (Pressure), CT (Straddle)

7. Technology
 p = 0.036

8. Ball & Seat, CT (Pressure), CT (Straddle)

* Half-cycle cost (drilling and completion only) per boe of EUR
The path to the group with the lowest median half-cycle cost per boe.

- Lowest median cost is $10.03 per boe of EUR, half-cycle.

- Three key factors to minimize unit cost:
 - Technology – CT Cut/Port (packer)
 - Proppant – greater than 7 tonnes per stage
 - Stages – greater than 15 stages

- 96 wells in this group: operated by CPG (87 wells), Taqa (4), Shelter Bay (3), Pinecrest (1), Landex (1)

* Half-cycle cost (drilling and completion only) per boe of EUR.
Conclusions
Conclusions

• Multivariate statistical analysis can illuminate
 ☐ Completions practices to engage and avoid to maximize EUR
 ☐ Completion practices to engage and avoid to minimize cost per barrel
 ☐ The value of detailed data collection
 ☐ The variables to focus effort/money on
 ☐ Guide technical question – ie. Why is a certain fluid or proppant performing better than others?

• CDL’s MV analytics provides a method to test individual D&C design parameters against actual results.

• With tuning of design some operators have lifted their P50 results to what used to be the area P10

• Analysis can guide new entrants in an area to a higher point on the learning curve
Thank you to other contributors

- Joshua Lee – type curves/EUR data
- Meridee Fockler – organizer
- Zenith Phillips – graphic designer
- Candace Keeler – cartographer
- Alison Lane – administration

CDL products used for this presentation:

- DISCOVERY DIGEST
- DIGEST Spark
- CATALYST
- WELL COMPLETIONS DATABASE

Powered by IHS Data
For inquiries with respect to this presentation, please contact:

info@canadiandiscovery.com

Find us on: